
COMMUNICATIONS OF THE ACM June  2006/Vol. 49, No. 6 57

SOFTWARE SECURITY IS 
SOFTWARE RELIABILITY 

By FELIX “FX” LINDNER  

ecent efforts by academic researchers and the com-
puter security industry have sought to find ways to

detect and prevent software vulnerabilities from being
exploited. Others have sought to find ways to detect and
prevent unauthorized access to computer systems. While

attack methods may differ significantly, the underlying
security issues (viewed through the prism of academic

software reliability research) are called “software
faults.” Hackers, however, describe the same issues

in different terms. Attempts to identify similar-
ities among faults are biased toward the hacker

view, as I discuss here, and often yield incomplete defenses. Missing the fact
that reliability and security research addresses the same technical issues leads
to inadequate approaches by the academic community [1]. 

Enlist hacker expertise, but stay with academic 

fault naming conventions, when defending against the 

risk of exploitation of vulnerabilities and intrusions. 

R



58 June  2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

If software always worked as specified or
intended by its makers, only a small subset would be
vulnerable to attack, and defenses would be much
easier to implement. By resolving the naming issues
and looking at hard data (such as vulnerabilities and
their fault classes), software defenders and users alike
would be able to achieve secure, reli-
able software. 

The science of software testing
names software faults according to
their root cause. Hackers name secu-
rity issues according to bug class, a
type of software defect they are able
to exploit. When a particular type of
coding fault is exploited for the first
time, it becomes a bug class, and
attackers search for instances of the
same bug class in all other types of
software, targeting similar vulnera-
bilities. The exploited software fault
always belongs to a bug class, while
most software faults don’t belong to a
particular bug class, since attacking
hackers don’t know how to exploit
them. 

Considering how academic
researchers name software defects
reveals how many obscure names
from the hacker community emerge;
for example, in software testing,
buffer overflows and integer overflows are called “data
reference failures.” Most so-called denial-of-service
problems in software are data reference failures, some
falsely classified as “denial of service,” rather than
“nonexploitable buffer overflows.” This leads to the
perception that the fault cannot be used to break into
the system, though only the person who classified it is
unable to break in. This nomenclature is evidence that
naming is based on exploitability rather than cause
and thus often produces solutions that ignore entire
groups of faults. 

So-called format string bugs and several types of

race conditions belong to the fault class known as
“interface failures.” Directory traversal bugs, illegal
directory or file access, and remote command execu-
tion almost always turn out to be interface failures.
The difference is that the interface failing is so impor-
tant that these faults deserve their own name—“oper-
ating system interface failures.” 

Two bug classes that have emerged in the con-
text of Web applications are “SQL injections” and
“cross-site scripting vulnerabilities,” each of which
can be classified as input/output errors. Academic
research in reliable software and software testing has
identified several other defect types that hackers have
not (yet) been able to exploit and hence have not yet
named. 

How do hackers distinguish between a software
bug that is not security-related and a vulnerability?
For example, finding all potential buffer overflows in
a given piece of software may yield a number of find-
ings; none, some, or all might be classified as a vul-
nerability. Classification depends on who causes the
condition, what is the condition’s most severe effect,
and how the condition might be used to perform an

RECENT BREAKTHROUGHS BY HACKERS AND 
COMPUTER SECURITY RESEARCHERS HAVE BEEN POSSIBLE

ONLY BECAUSE HACKERS FOUND THEIR WAY
INTO THE ACADEMIC WORLD YET WERE 

STILL REQUIRED TO BE HACKERS. 

Software bugs figure (6/06)

Year

1999

OS Interface flaws

2000 2001 2002 2003 2004 2005

100%

80%

60%

40%

20%

0%

Logic flaws Data Reference Failures Interface Failures Input/Output Errors

Common 
vulnerabilities 

and exposures 
reclassified using

terms from 
software reliability

research. 



action that would normally be restricted. If the who
question can be answered with “hacker,” the what
question with an (at least) “mostly controllable condi-
tion,” and the how question with “a known procedure
for this bug class,” hackers call it a vulnerability, since
they are able to exploit it. A piece of software written
to automatically take advantage of the situation is
called “the exploit.” 

Developers must distinguish among software fault,
vulnerability, and exploit to be able to build effective
defenses. Protection mechanisms [3, 5, 6] aim to pre-
vent functioning exploits while at least theoretically
(and often practically) still allowing a software bug to
turn into a vulnerability. In hacker parlance, the bug
class is the same and valid; only the exploitation para-
meters have changed. 

To clarify the process of turning nonideal software
behavior into an exploit, I offer two simplified, fic-
tionalized examples from entirely different bug classes
and explain the thought processes needed to exploit
each of them. One is a binary program called “user-
agent capability matching,” or uacm, running on
Linux. The tool matches the HTTP user-agent string,
usually sent by Web browsers, against a growing data-
base of known Web browsers and identifies their capa-
bilities; this way, a Web developer knows exactly
which HTML version and features will work and
which won’t. Web developers call this command line
tool from their common gateway interface scripts on
a Web server to generate elegant and functioning
HTML based on its output. The tool takes the envi-
ronment variable HTTP_USER_AGENT as input and
returns the result to the standard output. 

The second example is a front-end Web applica-
tion called “Web customer relationship manage-
ment,” or WebCRM, involving an input form
requiring a username and a password for logging-in as
a customer. In this application, customers cannot sim-
ply register themselves. 

As I discussed earlier, a bug must be identified by
the hacker before it becomes a vulnerability. The same
must happen in the two examples. The uacm binary
can be tested on the Linux command line by setting
the environment variable HTTP_USER_AGENT to
arbitrary values and then running the program. In this
case, the hacker chooses to set the environment vari-
able to a long string of characters (typically the char-
acter A) and runs the program. There is a fair chance
that the attack will not be as straightforward as the
test, but this is of no concern to the hacker when iden-
tifying a vulnerability. 

When running the uacm binary with more than
200 characters, a hacker would observe a crash that
produces the message “segmentation fault (core

dumped)” as a result of a critical error occurring in the
program’s memory space. Identifying a potential issue
in WebCRM is different. The hacker inserts a num-
ber of nonalphanumeric characters (such as “, ’ , and
%) in an application’s username field and clicks the
login button. The application returns an error mes-
sage stating that the execution of a SQL statement
failed due to a syntax error, though the application
does not show the failing statement. When trying to
login with alphanumeric characters for both username
and password, the application presents a “wrong pass-
word” Web page. 

For the uacm binary, the hacker identifies the
addresses of the last successful library calls by using
ltrace, which is designed to record calls to library
functions and their arguments [2], as in this classic
stack buffer overflow scenario [5]: 

[0x804846d]getenv(“HTTP_USER_AGENT)

= “AAAAAAAAAAAAAAAA”...

[0x80484a8] strcpy(0xbfb5e7a8,

“AAAAAAAAAAAAAAAAAAA”...) = 0xbfb5e7a8 

Here, the address of the first argument of
strcpy is a stack location. Inspection of the disas-
sembled code around the caller’s address
[0x80484a8] then shows that the destination
buffer is approximately 110B, after which saved
addresses of the CPU are overwritten. For the
WebCRM application, a hacker would test each of
the previous nonalphanumeric characters separately.
By deducing that only the ’ character causes an error
message, the hacker would then make an educated
guess about the type of issue—in this case a SQL
injection. 

The methodologies of the two types of attacks con-
verge at this stage in the process of identifying a vul-
nerability and turning it into an exploit. The attack
on the uacm binary and the attack on the WebCRM
application each present the same general challenge.
The attacker must build a mental representation of a
remote system through educated guessing and intu-
ition. Based on this representation, which a hacker
might or might not be able to verify, the hacker would
have to deduce a method to influence the remote pro-
gram. The hacker imagines how the process operates
on the remote system when overflowing the buffer on
the stack and overwriting the saved return address on
the stack to control the remote program. While the
WebCRM application suffers from a completely dif-
ferent type of vulnerability, the steps the hacker must
take in building a mental representation are the same

COMMUNICATIONS OF THE ACM June  2006/Vol. 49, No. 6 59



as with the uacm binary. When the user data contains
the ’ character, the hacker is able to terminate the data
and modify the actual SQL statement. The hacker
must also make assumptions concerning the nature
and structure of the statement to be modified, since it
is not visible. The aim is to modify the executed state-
ment and change its meaning in a syntactically correct
way, causing the system to falsely identify the hacker
as a legitimate user. 

In the uacm binary example, the hacker must
make assumptions concerning the layout of the stack
on the target machine. Overwriting the saved return
address of the affected function with an address
pointing inside the buffer would cause the CPU to
attempt to execute (as code) the data in the user agent
string. Exploiting this effect, the hacker can send cus-
tom-developed machine instructions in the string
instead of a series of capital A letters. If everything
works well, execution redirection occurs, the code is
executed, and the hacker can run arbitrary function-
ality of the hacker’s choosing on the remote system. 

The WebCRM application is exploited by supply-
ing the specially crafted string ` OR `1’=‘1 as the
username without a password; it is then concatenated
to the SQL statement on the server-side (attacker
string underlined): 

SELECT * FROM usertable WHERE

username = ` ` OR `1’=’1’ AND PASS-

WORD=’ ’ 

The string causes the database to return any user-
name with an empty password. If at least one user
exists without a password, the hacker gets in. 

The respective victims are, however, able to fix the
bugs relatively easily. For example, the developer of
the uacm program can introduce a length check of
the HTTP user-agent string before copying it into a
fixed size buffer. And the developer of the WebCRM
application software can disallow any character other
than alphanumeric ones in usernames and passwords.
Unfortunately, it is common knowledge that such
selective fixes do not work well in the long run.
Where there is one bug, there are others, essentially

representing a quality problem in the software. 

BUG CLASS EVOLUTION

While not a perfect data source, the Common Vul-
nerabilities and Exposures database (cve.mitre.org)
contains (as of Feb. 6, 2006) 15,024 entries of pub-
licly known security issues. I used the entire database
and a simple keyword-matching script to reclassify
the vulnerabilities from hacker terms into a number
of the software fault classes known by academic
researchers. 

This remapping yielded several interesting insights
concerning the evolution of bug classes (see the figure
here). The most interesting is the prominent increase
of input/output errors since 2000, likely occurring for
two main reasons: ease of testing for faults and a grad-
ual change in development environments. For exam-
ple, it is easier to test for faults in the category of SQL
injections and cross-site scripting. Moreover, the
number of Web-based systems has also increased,
along with the number of potential targets. More and
more potential targets attract more and more hackers
to look for this type of vulnerability. 

Meanwhile, most programmers don’t write
critical software in C anymore, especially in Web
environments, (the most widely attacked systems),
due to their visibility and Internet-wide accessibil-
ity. Dominant in this domain are languages like
PHP and Java that are less prone to buffer overflow
attacks but are more likely to produce operating
system interface- and input/output-error-type
faults. Also, along with increased use of modern
programming languages has come a steady decrease
in the number of data-reference faults, or buffer
overflows over time, due to their built-in boundary
checks. 

An emerging trend among hackers involves going
from attacks on the deepest level of software upward
on the abstraction level toward attacks involving the
application’s own logic. In principle, these attacks do
not differ much from buffer overflow attacks, but it’s
much easier for attackers to adjust their methods

60 June  2006/Vol. 49, No. 6 COMMUNICATIONS OF THE ACM

THE MOST PRESSING ISSUE IN THE 

COOPERATION BETWEEN HACKERS AND ACADEMIC

RESEARCH IS A LACK OF ACCESS TO EACH 
OTHER’S WORK METHODS. 



from buffer overflows to SQL injections than to mod-
ify specialized defenses to prevent new attacks. 

An additional problem is identifying the point of
prevention. The National Vulnerability Database [7]
reported that in 2000, 59% of all published vulnera-
bilities concerned server software. The picture had
reversed in 2005 with 63% of all published vulnera-
bilities concerning clients (such as Web browsers).
This finding does not mean that servers are more
secure but that attackers moved on because there is
still plenty of vulnerable software around. 

Commonly deployed defense mechanisms (such as
network and application firewalls) have changed the
picture only slightly for attackers while requiring a sig-
nificant amount of additional development and main-
tenance work on the part of system administrators.
Ways to prevent specific exploitation techniques are
likely to be rejected when undergoing thorough
cost/benefit analysis. 

The anti-hacker technology that probably has
the greatest impact on system security is the rule
write XOR execute, which declares memory
either writable or executable, never both. It is aimed at
preventing the execution of code in memory areas
that are writable but does not affect legitimate appli-
cations and defies exploitation. The rule was devel-
oped by hackers who gave it to both the software
development and hardware industries. 

The only approach that seems to work well for
identifying vulnerabilities and protecting all kinds of
systems is source code auditing, whereby a skilled
third party reevaluates the software design and its
implementation. Unfortunately, the availability of
skilled third parties is limited, especially with the
amount of software worldwide doubling in size
approximately every 18 months. 

Hackers are for computer security what [8]
described as the “intraspecialist level,” or highly moti-
vated experts in their own limited field. Software secu-
rity and reliability research is very strong at both the
interspecialist level and at the pedagogical level and is
found in the academic community and in authoring
textbooks. Recent breakthroughs (such as binary
code-matching algorithms) by hackers and computer
security researchers have been possible only because
hackers found their way into the academic world [4]
yet were still required to be hackers. 

The most pressing issue in the cooperation
between hackers and academic research is a lack of
access to each other’s work methods. The more
accomplished hackers are motivated to find solutions
for the security challenges faced by the worldwide

community of computer-dependent people. They
would thus work well as peers in a scientific context.
What they need is a team of researchers with the
required background, or what Ludwik Fleck, a Polish
biologist, calls “textbook science” [9]. Access to such
work environments is not available for most hackers
due to their lack of academic titles, credentials, and
status, but strong demand for qualified security
experts signals the value of their expertise. 

CONCLUSION

Software testing procedures and algorithms have
advanced only incrementally since the 1970s and
1980s. Software security is the driving force behind
the need for software quality, since a lack of quality
is the primary reason for insecure software. Hackers
have managed to reinvent what the world of com-
puter science has known for decades, only poorly.
On the other hand, they identify a lot of software
vulnerabilities through their innovation. The only
solution for making systems as secure as we need
them to be by eliminating software vulnerabilities is
for hackers and academic researchers to unite. 

References
1. Barrantes, E., Ackley, D., Forrest, S., Palmer, T., Stefanopvic, D., and

Zovi, D. Randomized instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10th ACM Conference on Computer
and Communications Security (2003);
www.cs.unm.edu/~gbarrant/RISE.html. 

2. Cespedes, J. ltrace. Online documentation; packages.debian.org/unsta-
ble/utils/ltrace.html. 

3. Etoh, H. GCC Extension for Protecting Applications from Stack-smashing
Attacks. Technical report and source code, first published May 8, 2001;
www.trl.ibm.com/projects/security/ssp/. 

4. Flake, H. Structural comparison of executable objects. In Proceedings of
the Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (Dortmund, Germany, July 6–7, 2004), 161–173. 

5. Kuperman, B., Brodley, C., Ozdoganoglu, H., Vijaykumar, T., and
Jalote, A. Detection and prevention of stack buffer overflow attacks.
Commun. ACM 11, 48 (Nov. 2005), 50–56. 

6. Microsoft. Visual C Compiler Stack Protection. Microsoft Visual Studio
2005 documentation; msdn.microsoft.com/library/en-
us/vccore/html/vclrfGSBufferSecurity.asp. 

7. National Institute of Standards and Technology. National Vulnerability
Database, Gaithersburg, MD; nvd.nist.gov/. 

8. Reidel, D. Expository practice: Social, cognitive and epistemological
linkages. In Expository Science, T. Shinn and R. Witley, Eds., 1985,
31–60. 

9. Trenn, T. and Merton, R., Eds. The Genesis and Development of a Scien-
tific Fact. University of Chicago Press, Chicago, 1979. 

Felix “FX” Lindner (fx@sabre-labs.com) runs SABRE Labs, a
computer security consulting company in Berlin, Germany. 

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0600 $5.00

c

COMMUNICATIONS OF THE ACM June  2006/Vol. 49, No. 6 61


