Session

DEVELOPING AN UNDERGRADUATE
DISTRIBUTED DEVELOPMENT COURSE

Gregory J. Conti
, John M. D. Hill
, and Curtis A. Carver, Jr.

Abstract (This paper describes the curricular development and implementation of an undergraduate distributed application engineering course. The course was created in response to overwhelming demand by students and faculty to integrate material on Internet and World Wide Web technologies into a traditional computer science curriculum. The goal of the course is to give students a solid understanding of the components of a distributed application and the ability to use this knowledge to solve real world problems. The course uses active learning, standards and cross-platform techniques to focus on core principles that facilitate continued learning and integration of advances. Specific technologies used in the course are a means and not an end. Student progress is measured by a progressive programming project, quizzes and an exam.

 The material is grouped into four main sections: web site design and implementation, client-side processing, server-side processing and server management. The overall result is a comprehensive course that progressively covers distributed development from the client to the server.

Index Terms (capstone course, web development, distributed development, web-based application design

Background and Motivation

 The United States Military Academy at West Point, New York, is a medium-size academic institution with 4000 students (cadets). Every cadet takes a set of required courses, called the core, and selects either a major or a field of study in some discipline. In recent years there have been a total of about 100 majors in the Computer Science (CS) Program, and 25 majors in the Information Systems Engineering (ISE) Program with a CS focus. The Academy and the CS Program maintain a wide variety of computing laboratories, and every cadet has a computer in their room. The entire campus is very well inter-connected, and the staff, faculty, and cadets enjoy broadband access to the Internet.

It is important to the Army that all cadets, as part of a well-rounded education, have experience in engineering analysis, design, and implementation. Currently, every cadet is required to take a 5-course core engineering sequence (CES). There are seven such sequences to choose from: Computer Science, Electrical Engineering, Civil Engineering, Mechanical Engineering, Systems Engineering, and Environmental Engineering. Engineering majors automatically take the appropriate sequence for their major. The cadets who are not in an engineering major must select one of the core engineering sequences. This population is commonly referred to as “sequencers.”

The CS five-course core engineering sequence introduces cadets to the fundamentals of computing, computer systems, and databases, then completes the sequence with a two-course design and implementation capstone. See Table I for a listing of the CS sequence, with the current course numbers.

Table I

CS Five-Course Engineering Sequence
(Through the Class of 2004)

	Course
	Title
	Semester

	CS360
	Fundamentals of Computing
	Fall, Junior Year

	CS383
	Computer Systems
	Spring, Junior Year

	CS393
	Database Systems
	Spring, Junior Year

	CS407
	Computer Information Systems Design I
	Fall, Senior Year

	CS408
	Computer Information Systems Design II
	Spring, Senior Year

As a result of the curriculum changes, the CS Program has redesigned its core engineering sequence into three courses. The first two courses will be the somewhat modified fundamentals of computing and database systems courses, now to be called CS300 and CS350, respectively. The third course will be a capstone distributed application engineering course. The design and content of this course is described below. See Table II for the new CS three-course core engineering sequence. While the target audience for IT450 is the CS sequencers, CS and ISE majors will be allowed to take it as an elective to gain in-depth experience with distributed application engineering.

Table II

CS Three-Course Engineering Sequence
(The Class of 2005 and Beyond)

	Course
	Title
	Semester

	CS300
	Fundamentals of Computing
	Fall, Junior Year

	CS350
	Database Systems
	Spring, Junior Year

	IT450
	Distributed Application Engineering
	Fall, Senior Year

The IT450 CS sequence capstone course will be officially offered the first time in the junior year of the class of 2005 (Fall 2003). Two pilot sections are being conducted to refine the design and conduct of the course. These pilot sections are being populated by cadets from a variety of majors and fields of study to thoroughly “proof” the course. The first pilot section was conducted in the Spring of 2002.

Related Work

 Courses on web-based application design and software engineering are a relatively new topic at the undergraduate level. The World Lecture Hall lists no courses on the topic [2]. Ackermann proposed a general two-course framework which is project-based and intended for computer science majors only [3]. The paper presented limited details on the structure of the course other than the general topics covered in the two courses. Treu proposed a case-based course where the students decide what topics are taught in the course and then the students teach those topics to themselves [4]. The course, while taught at the undergraduate level, is conducted as if it was a graduate-level seminar to computer science majors only.

 The proposed course differs from previous approaches in that it is: (1) taught to non-majors as well as computer science majors; (2) a capstone design course that serves as an integrative experience for the non-majors in their three-course computer science sequence; and, (3) provides a more detailed course framework and philosophy than previous approaches. In these ways, this course is novel from previous approaches.

Goals

 IT 450 was designed to directly support the Academy’s academic vision and goals. Of particular relevance is the institution’s overarching Engineering and Technology goal that states “Graduates apply mathematics, science, technology, and the engineering design process to devise technological problem solutions that are effective and adaptable.”[5] More specifically, the Academy’s Engineering and Technology report breaks down this goal into the following capabilities of graduates:

· In an environment of uncertainty and change, identify needs that can be fulfilled via engineered solutions.

· Define a complex problem, account for its technological, political, social and economic dimensions.

· Determine what information is required to solve a problem; acquire that information from appropriate sources; and, when available information is imperfect or incomplete formulate reasonable assumptions that facilitate the problem solution.

· Apply the engineering design process and use appropriate technology to develop problem solutions that are both effective and adaptable.

· Demonstrate creativity in the formulation of alternative solutions.

· Apply mathematics, basic science, and engineering science to model and analyze a physical system or process.

· Work effectively on a team to solve a problem.

· Plan the implementation of an engineered solution.

· Communicate an engineered solution to both technical and non-technical audiences.

· Assess the effectiveness of an engineered solution.

· Demonstrate basic-level technical proficiency in an engineering discipline that is relevant to the needs of the Army.

· In response to a technological problem, learn new concepts in engineering and learn about new technologies on their own. [5]

 While IT450 cannot be expected to accomplish every facet of what the institution expects of graduates, it must directly support these higher level goals and smoothly integrate into the overall process of cadet experiences. In particular, a capstone experience is expected to utilize a common model for the engineering design process (Figure 1), provide more demanding ill-defined problems to be solved, require students to teach themselves an unfamiliar technology and culminate in a final design project . [5]

[image: image1.wmf]

Environment:

Technological

Economic

Political

Social

Problem

Definition

Needs

Analysis

Value System

Design

Implement

ation

Planning for

Action

Assessment &

Control

Execution

Engineering

Design

Design &

Analysis

Alternatives

Generation

Modeling &

Analysis

Decision

Making

Comparison of

Alternatives

Decision

Current Status:

What is?

The Engineeri

ng Design Process

Desired End State:

What should be?

Assessment & Feedback

Environment:

Technological

Economic

Political

Social

Problem

Definition

 Implementation

Engineering

Design

Design &

Analysis

Decision

Making

Current Status:

What is?

The Engineering Design Process

Desired End State:

What should be?

Assessment & Feedback

Figure 1
 The Engineering and Technology report further states that this final design project should have the following characteristics:

· an ill-defined problem, no single correct answer

· consideration of more than one design alternative

· an opportunity for creativity

· group problem solving

· written and oral reports

· self-assessment [5]

 The primary goal of IT450 is therefore to provide this capstone experience for CS sequencers using distributed technology as the vehicle. A secondary goal is to provide in-depth distributed development exposure for CS and ISE majors who take the course as an elective.

Meeting the Goals

 The overall plan to meet these needs is best articulated through the course objectives. These objectives state that students should:

· Understand web site design and implementation, client-side processing, server-side processing and server management.

· Possess a solid understanding of the components of a distributed application from the client to the server and the ability to use this knowledge to solve real world problems.

· Understand how to analyze, design, build and test a distributed application that solves a real world problem.

· Possess a foundation for continued learning in the distributed application domain.

Beyond the formal course objectives there are several other themes woven through the course: active learning, usability, non-proprietary industry standards and open-source technologies.

Active Learning - The same coursework must challenge both the sequencer population who take the course as a capstone and the more advanced population of Computer Science and Information Systems Engineering majors who can take the course as an elective. Incorporation of open-ended active learning techniques is critical to keep both populations engaged and learning.

Usability - Another area of concentration is usability. In the Academy’s traditional computer science curriculum, more emphasis is placed on theory and code development. IT450 will include an ongoing usability theme to help develop the art as well as the science of building distributed applications.

Non-Proprietary Industry Standards - A focus on non-proprietary industry standards will help shift the focus of development away from one vendor’s solution toward community wide solutions.

Open-Source Technologies - Finally, open-source technologies provide a low-cost vehicle for development that students can utilize during and after the course. These real-world tools will increase student motivation and help encourage continued learning.

These goals and themes paved the way for the development of specific procedures and techniques to implement IT450.

Course Development

The development of the course flowed directly from the course objectives and included development of the syllabus, formulation of the evaluation plan, selection of course texts, formulation of a course feedback plan and identification of technical infrastructure requirements.

Syllabus Development - Groups of instructors with web development experience met to discuss the framework required to accomplish the course objectives. Each iteration of the framework was printed on large format paper and placed in a public location to allow review and comment by faculty and students. One difficulty encountered was the wide variety of approaches and technologies that were possible to accomplish the same course objectives. Of critical importance was the appointment of a single course developer who would implement a consistent vision from the myriad of possible solutions. This director was granted not only the responsibility to create the course, but also a high degree of autonomy in selecting course content consistent with the general course objectives. Several iterations of public review and group brainstorming allowed the course developer to produce a final draft of the syllabus. This final draft locked down the current syllabus and allowed the development of lesson objectives and the selection of a course text.

At this stage of development, the 40 lesson course was broken into the following main blocks:

· Course Introduction
(2 lessons)

· Web Site Design

(5 lessons)

· XHTML Development
(6 lessons)

· Client Side Processing
(7 lessons)

· Server Side Processing
(5 lessons)

· Server Technology
(5 lessons)

· Wrap-up

(2 lessons)

Where applicable, each lesson would consist of a progressive series of hands-on in-class exercises that would allow active learning of the current subject. Specifically the lesson sequence included:

1
Course Introduction

2
Networks Overview

3
Web Site Design Process

4
Web Site Design Process

5
Interface Design

6
Orientation to XHTML

7
XHTML Formatting and linking

8
XHTML Tables and Frames

9
XHTML Cascading Style Sheets

10
Multimedia - Graphics

11
Multimedia - Audio and Animation

12
XHTML Project Preparation Time

13
Orientation to Client Side Scripting

14
Client Side Scripting - Selection

15
Client Side Scripting - Iteration

16
Client Side Scripting - Application

17
Client Side Code Reuse

18
Survey of Client Side Scripting Tools

19
Client Side Processing Project Preparation Time

20
Orientation to Server Side Scripting
Client

21
XHTML Forms

22
Server Side Scripting - Selection

23
Server Side Scripting - Iteration

24
Server Side Database Access

25
Server Side Scripting - Application

26
Server Side Code Reuse

27
Survey of Server Side Scripting Tools

28
Final Project Preparation Time

29
Project Presentations to Class

30
Project Presentations to Class

31
Web Server Overview

32
Server Configuration

33
Server Security

34
Application Servers

35
Survey of Server Technology

36
Security

37
XML

38
.NET / Sun ONE / Web Services

39
Visual Development

40
Future Directions and Review

Evaluation Plan - The evaluation plan consisted of a series of progressive projects, an instructor grade and a comprehensive final exam:

· Website Design Projects (65%)

· Phase I - Initial design, due lesson 6. Individual work. (10%)

· Phase II - Build XHTML website based on design, due lesson 13. Individual work. (15%)

· Phase III - Add client side scripting functionality, due lesson 20. Individual work. (15%)

· Phase IV - Add server side scripting functionality to include an SQL database backend and email generation, due lesson 29. Group work. (25%)

· Instructor Grade (15%)

· Final Exam (20%)

Percentages listed indicate contribution to the student’s overall course grade.

Selection of Course Texts - The textbook packages considered fell into two main categories: a single comprehensive volume which covers a large number of technologies versus a set of smaller technology specific books. The trade-off was one of breadth versus depth. Ultimately Internet and World Wide Web -- How to Program by Deitel and Deitel was chosen because of its coverage of all major web technologies. It provided reasonable depth for the core technologies for the course -- XHTML, JavaScript, Perl/CGI and Apache. At the same time, its breadth provided more advanced students the opportunity to delve deeper into related topics. Deitel and Deitel was supplemented by three language specific pocket guides by O’Reilly Publishing: HTML, JavaScript and Perl to provide in-depth resources at a reasonable price.

 Course Feedback - Formal course feedback was built into the course at the halfway point and at the end, but lessons included additional time for informal feedback throughout the course. During the first trial section, students provided daily feedback on their understanding of the material and their perception of its relevance. Where applicable, instructors took action based on the feedback and modified upcoming lessons. This feedback went beyond just sound teaching and was a proactive attempt to engage students in the building of the course. The students were made aware that this course was a prototype and that their input could directly impact the course.

 Technical Infrastructure - In IT450, specific web development technologies are a means to an end and not an end unto themselves. The course objectives do not mandate specific technologies, but instead seek to develop an understanding of how to analyze, design, build, and test distributed applications. The course director ultimately chose XHTML for the Web Site Design block, ECMAScript/JavaScript for the Client Side Processing block, Perl/CGI/MySQL for the Server Side Processing block and Apache for the Server Configuration and Management block. These technologies were selected for their ability to teach the core components of a distributed application and, at the same time, emphasize community standards instead of vendor specific implementations. Open source technologies provided free access to the primary tools needed for the course.

 The classroom infrastructure for IT450 was very important because of the hands on nature of the course. Eventually an Internet capable Windows 2000 PC lab was chosen. Each PC also had the capability to access a Unix server running Apache. Students were given full read-write access to directories on the server for their XHTML files and the CGI programs. The server was a special development machine visible only on the campus internal network and not visible to the entire Internet. This arrangement helped mitigate the risk associated with giving students full access to the CGI directory.

Results and Lessons Learned

 The course objectives were met. Each student, regardless of their background as a sequencer or CS/ISE major successfully implemented a distributed web application that included both client-side processing and server-side processing with a database back-end. In the process, the students were successful in applying the engineering design process to develop creative solutions, plan the implementation and build it. Several times each student communicated their solution, both orally and in written form, to a technical audience. The course often only provided the bare intellectual framework of the given material and used projects as a means to allow students to consolidate knowledge and as an opportunity to teach themselves about new technologies. Students selected topics from institutional needs and demonstrated the technical proficiency in the discipline to solve the problems.

 IT450 was successful in most areas of the Engineering and Technology report’s list of capabilities of graduates, but did not further all aspects. Most reasons are due to shortcomings in the course and not in the students. The course did not require students to model and analyze a physical system or process, account for political, economic and social dimensions, did not require communication to a non-technical audience and only informally assessed the effectiveness of their solutions. The students did work effectively as a team, but resisted, instead wanting to work individually. Their stated reason for this desire was to personally implement all aspects of the application and to avoid not fully understanding components constructed by other team members. This situation was exacerbated in groups which consisted of both sequencers and CS/ISE majors.

 The course succeeded as a capstone for sequencers. It utilized the institutional engineering design process to solve an ill-defined problem and culminated in a final project which allowed a high degree of creativity. The CS/ISE majors taking the course are already involved with a software engineering based two semester capstone, but did not seem to mind the capstone structure of the course and enjoyed the in depth treatment of web technologies.

Due to the sequencer and CS/ISE major mixture, open-ended active learning was absolutely critical to the success of the course. Each block of lessons began with a big-picture orientation to the subject in order to develop the internal schema on which to hang new knowledge. Each lesson presented a new area of knowledge and included a clear linkage with the consistent big-picture view of a distributed application. The presentation of new material included a list of resources for further exploration. This phase was followed by hands-on exercises of increasing complexity, the earlier exercises covering the fundamental lesson objectives. Later exercises, allowed more advanced students to explore at their own pace.

The focus on usability was surprisingly effective. Historically cadets have been quite adept at coding applications, but lacked experience in the art of interface design and usability. The inclusion of material on web site design and usability in the early lessons attuned the students and started an ongoing dialog about good and bad web design. Each phase of the project included a peer critique from an interface design and usability perspective.

Another surprising success was the use of open-source software. Cadet’s enjoyed the fact that they could freely download Apache, Perl, PHP, MySQL onto their Linux or Windows machines. IT450 showed them not only the value of open-source software, but also how to acquire it and perhaps one day contribute to its development. The primary course technologies of XHTML, JavaScript, MySQL and Perl/CGI were clearly up to the task of teaching distributed development. The rigorous foundation of programming they had in CS300, Fundamentals of Computing, gave them the background needed to understand the basics of programming in Perl and JavaScript including the development of new code and code reuse. CS350, Database Systems, provided the basic background of database design and SQL required for the database backend. IT450 provided an orientation to the larger framework of a distributed application and its component parts, which the cadets were able to implement using their open-source tools. The use of non-proprietary standards met with success. The cadets were interested in learning technologies that were of use in the “real-world” and enjoyed the ability to use open-source tools.

Future Work

Major components of future work for IT450 include:

· Reevaluation of the format of group projects.

· Development of a web specific engineering design model.

· Ways to provide greater emphasis on problem analysis, application design and testing.

· Review of the textbook selection.

· Analysis of the entire three course computer science sequence as a whole.

· Reevaluation of the primary course technologies.

Group projects are required by the Academy for a capstone course. In IT450 each student completed a series of three programming projects of increasing complexity. As a compromise to the students who wished to work independently, the first two phases were individual work. The final phase brought together groups of two students to jointly complete the final phase on only one distributed application. This technique forced one out of every two students to stop progress on their site. A possible alternative is to form groups early in the course which would work on the project throughout the entire course. This first iteration of IT450 allowed students to choose topics for their projects as long as they were non-profit and were cadet related. Another aspect to be considered is whether to solicit clients from the Academy, or perhaps the Army at large. This would provide the opportunity for cadets to practice communicating technical concepts to a non-technical audience and provide the opportunity for professional and community service.

 The core engineering design process of problem definition, design and analysis, decision making and implementation is adequate for a generic model. IT450 requires a more specific model for distributed applications.

The syllabus needs to be refined to include a greater design component. The current syllabus focuses heavily on the implementation phase and provides only limited treatment of the analysis, design and testing phases.

It is difficult to find one text that does all things well. IT450’s primary text provides comprehensive coverage of all the primary web development technologies. It provides the breadth required for the course, but lacks the depth. Another option that will be reviewed is the selection of three technology specific books such as:

· HTML4 for the World Wide Web by Castro

· JavaScript for the World Wide Web by Negrino and Smith

· Perl and CGI for the World Wide Web by Castro

The specific technologies to build distributed applications are constantly changing. IT450 attempts to focus on the core principles and use technologies as a means to this end. The initial selection of technologies: XHTML, JavaScript, Perl/CGI and Apache may require refinement. One possible scenario would change the server side scripting language from Perl to PHP.

Finally, IT450 does not exist in a vacuum. A fertile area of future work is an analysis of the Computer Science sequence not as three 40 lesson courses, but one 120 lesson continuum.

Conclusion

The first iteration of the course was successful, but will require further consolidation and preparation for the next experimental iteration in the Spring of 2003 with an eye to full implementation in the Fall of 2003.

References
[1] "Accreditation Board for Engineering and Technology," http://www.abet.org, accessed on February 24th, 2002.

[2] World Lecture Hall. Available at “http://www.utexas.edu/world/lecture/”. Accessed on 4 March 2002.

[3] Ackermann, Ernest. “Internet Curriculum. Two courses: introductory and advanced” Proceedings of the 4th annual SIGCSE/SIGCUE on Innovation and Technology in Computer Science Education. 1999. Cracow, Poland. 179-180.

[4] Treu, Kevin. “To Teach the Unteachable Class: An Experimental Course in Web-Based Application Design” Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education. Feb 27- Mar 3, 2002, Cincinnati, OH. 201-205.

[5] “Engineering and Technology Goal Team Report,” United States Miliatary Academy, October 2001.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Military Academy, the Department of the Army, or the Department of Defense or the U.S. Government.

� Gregory Conti, United States Military Academy, Dept. of Electrical Engineering & Computer Science, West Point, NY 10996, conti@acm.org

� John M. D. Hill, USMA, Dept. of EE&CS, john@duvalhill.com

� Curtis A. Carver, Jr., USMA, Dept. of EE&CS, carverc@acm.org

0-7803-7444-4/02/$17.00 © 2002 IEEE
November 6 - 9, 2002, Boston, MA

32nd ASEE/IEEE Frontiers in Education Conference

1

_1083734456.doc

Environment:

Technological

Economic

Political

Social

Problem

Definition

Needs

Analysis

Value System

Design

Implementation

Planning for

Action

Assessment &

Control

Execution

Engineering

Design

Design &

Analysis

Alternatives

Generation

Modeling &

Analysis

Decision

Making

Comparison of

Alternatives

Decision

Current Status:

What is?

The Engineering Design Process

Desired End State:

What should be?

Assessment & Feedback

Environment:

Technological

Economic

Political

Social

Problem

Definition

 Implementation

Engineering

Design

Design &

Analysis

Decision

Making

Current Status:

What is?

The Engineering Design Process

Desired End State:

What should be?

Assessment & Feedback

